On Clusters that are Separated but Large

Sariel Har-Peled, Joseph Rogge

$\renewcommand{\Re}{\mathbb{R}}$Given a set $P$ of $n$ points in $\Re^d$, consider the problem of computing $k$ subsets of $P$ that form clusters that are well-separated from each other, and each of them is large (cardinality wise). We provide tight upper and lower bounds, and corresponding algorithms, on the quality of separation, and the size of the clusters that can be computed, as a function of $n,d,k,s$, and $\Phi$, where $s$ is the desired separation, and $\Phi$ is the spread of the point set $P$.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment