Quantized Conditional COT-GAN for Video Prediction

Tianlin Xu, Beatrice Acciaio

Causal Optimal Transport (COT) results from imposing a temporal causality constraint on classic optimal transport problems, which naturally generates a new concept of distances between distributions on path spaces. The first application of the COT theory for sequential learning was given in Xu et al. (2020), where COT-GAN was introduced as an adversarial algorithm to train implicit generative models optimized for producing sequential data. Relying on Xu et al. (2020), the contribution of the present paper is twofold. First, we develop a conditional version of COT-GAN suitable for sequence prediction. This means that the dataset is now used in order to learn how a sequence will evolve given the observation of its past evolution. Second, we improve on the convergence results by working with modifications of the empirical measures via a specific type of quantization due to Backhoff et al. (2020). The resulting quantized conditional COT-GAN algorithm is illustrated with an application for video prediction.

Knowledge Graph



Sign up or login to leave a comment