VT-SSum: A Benchmark Dataset for Video Transcript Segmentation and Summarization

Tengchao Lv, Lei Cui, Momcilo Vasilijevic, Furu Wei

Video transcript summarization is a fundamental task for video understanding. Conventional approaches for transcript summarization are usually built upon the summarization data for written language such as news articles, while the domain discrepancy may degrade the model performance on spoken text. In this paper, we present VT-SSum, a benchmark dataset with spoken language for video transcript segmentation and summarization, which includes 125K transcript-summary pairs from 9,616 videos. VT-SSum takes advantage of the videos from VideoLectures.NET by leveraging the slides content as the weak supervision to generate the extractive summary for video transcripts. Experiments with a state-of-the-art deep learning approach show that the model trained with VT-SSum brings a significant improvement on the AMI spoken text summarization benchmark. VT-SSum will be publicly available to support the future research of video transcript segmentation and summarization tasks.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment