Designing predefined-time differentiators with bounded time-varying gains

Rodrigo Aldana-López, Richard Seeber, David Gómez-Gutiérrez, Marco Tulio Angulo, Michael Defoort

There is an increasing interest in designing differentiators, which converge exactly before a prespecified time regardless of the initial conditions, i.e., which are fixed-time convergent with a predefined Upper Bound of their Settling Time (UBST), due to their ability to solve estimation and control problems with time constraints. However, for the class of signals with a known bound of their $(n+1)$-th time derivative, the existing design methodologies are either only available for first-order differentiators, yielding a very conservative UBST, or result in gains that tend to infinity at the convergence time. Here, we introduce a new methodology based on time-varying gains to design arbitrary-order exact differentiators with a predefined UBST. This UBST is a priori set as one parameter of the algorithm. Our approach guarantees that the UBST can be set arbitrarily tight, and we also provide sufficient conditions to obtain exact convergence while maintaining bounded time-varying gains. Additionally, we provide necessary and sufficient conditions such that our approach yields error dynamics with a uniformly Lyapunov stable equilibrium. Our results show how time-varying gains offer a general and flexible methodology to design algorithms with a predefined UBST.

Knowledge Graph



Sign up or login to leave a comment