Efficient Facial Expression Analysis For Dimensional Affect Recognition Using Geometric Features

Vassilios Vonikakis, Stefan Winkler

Despite their continued popularity, categorical approaches to affect recognition have limitations, especially in real-life situations. Dimensional models of affect offer important advantages for the recognition of subtle expressions and more fine-grained analysis. We introduce a simple but effective facial expression analysis (FEA) system for dimensional affect, solely based on geometric features and Partial Least Squares (PLS) regression. The system jointly learns to estimate Arousal and Valence ratings from a set of facial images. The proposed approach is robust, efficient, and exhibits comparable performance to contemporary deep learning models, while requiring a fraction of the computational resources.

Knowledge Graph



Sign up or login to leave a comment