High Dimensional Expanders: Eigenstripping, Pseudorandomness, and Unique Games

Mitali Bafna, Max Hopkins, Tali Kaufman, Shachar Lovett

Higher order random walks (HD-walks) on high dimensional expanders (HDX) have seen an incredible amount of study and application since their introduction by Kaufman and Mass [KM16], yet their broader combinatorial and spectral properties remain poorly understood. We develop a combinatorial characterization of the spectral structure of HD-walks on two-sided local-spectral expanders [DK17], which offer a broad generalization of the well-studied Johnson and Grassmann graphs. Our characterization, which shows that the spectra of HD-walks lie tightly concentrated in a few combinatorially structured strips, leads to novel structural theorems such as a tight $\ell_2$-characterization of edge-expansion, as well as to a new understanding of local-to-global algorithms on HDX. Towards the latter, we introduce a spectral complexity measure called Stripped Threshold Rank, and show how it can replace the (much larger) threshold rank in controlling the performance of algorithms on structured objects. Combined with a sum-of-squares proof of the former $\ell_2$-characterization, we give a concrete application of this framework to algorithms for unique games on HD-walks, in many cases improving the state of the art [RBS11, ABS15] from nearly-exponential to polynomial time (e.g. for sparsifications of Johnson graphs or of slices of the $q$-ary hypercube). Our characterization of expansion also holds an interesting connection to hardness of approximation, where an $\ell_\infty$-variant for the Grassmann graphs was recently used to resolve the 2-2 Games Conjecture [KMS18]. We give a reduction from a related $\ell_\infty$-variant to our $\ell_2$-characterization, but it loses factors in the regime of interest for hardness where the gap between $\ell_2$ and $\ell_\infty$ structure is large. Nevertheless, we open the door for further work on the use of HDX in hardness of approximation and unique games.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment