Reference Governor-Based Fault-Tolerant Constrained Control

Mehdi Hosseinzadeh, Ilya Kolmanovsky, Sanjoy Baruah, Bruno Sinopoli

This paper presents a fault-tolerant control scheme for constrained linear systems. First, a new variant of the Reference Governor (RG) called At Once Reference Governor (AORG) is introduced. The AORG is distinguished from the conventional RG by computing the Auxiliary Reference (AR) sequence so that to optimize performance over a prescribed time interval instead of only at the current time instant; this enables the integration of the AORG with fault detection schemes. In particular, it is shown that, when the AORG is combined with a Multi-Model Adaptive Estimator (MMAE), the AR sequence can be determined such that the tracking properties are guaranteed and constraints are satisfied at all times, while the detection performance is optimized, i.e., faults can be detected with a high probability of correctness. In addition a reconfiguration scheme is presented that ensures system viability despite the presence of faults based on recoverable sets. Simulations on a Boeing 747-100 aircraft model are carried out to evaluate the effectiveness of the AORG scheme in enforcing constraints and tracking the desired roll and side-slip angles. The effectiveness of the presented fault-tolerant control scheme in maintaining the airplane viability in the presence of damaged vertical stabilizer is also demonstrated.

Knowledge Graph



Sign up or login to leave a comment