Adaptive Multilevel Monte Carlo for Probabilities

Abdul-Lateef Haji-Ali, Jonathan Spence, Aretha Teckentrup

We consider the numerical approximation of $\mathbb{P}[G\in \Omega]$ where the $d$-dimensional random variable $G$ cannot be sampled directly, but there is a hierarchy of increasingly accurate approximations $\{G_\ell\}_{\ell\in\mathbb{N}}$ which can be sampled. The cost of standard Monte Carlo estimation scales poorly with accuracy in this setup since it compounds the approximation and sampling cost. A direct application of Multilevel Monte Carlo improves this cost scaling slightly, but returns sub-optimal computational complexities since estimation of the probability involves a discontinuous functional of $G_\ell$. We propose a general adaptive framework which is able to return the MLMC complexities seen for smooth or Lipschitz functionals of $G_\ell$. Our assumptions and numerical analysis are kept general allowing the methods to be used for a wide class of problems. We present numerical experiments on nested simulation for risk estimation, where $G = \mathbb{E}[X|Y]$ is approximated by an inner Monte Carlo estimate. Further experiments are given for digital option pricing, involving an approximation of a $d$-dimensional SDE.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment