Reinforcement Learning for Adaptive Optimal Stationary Control of Linear Stochastic Systems

Bo Pang, Zhong-Ping Jiang

This paper studies the adaptive optimal stationary control of continuous-time linear stochastic systems with both additive and multiplicative noises, using reinforcement learning techniques. Based on policy iteration, a novel off-policy reinforcement learning algorithm, named optimistic least-squares-based policy iteration, is proposed which is able to iteratively find near-optimal policies of the adaptive optimal stationary control problem directly from input/state data without explicitly identifying any system matrices, starting from an initial admissible control policy. The solutions given by the proposed optimistic least-squares-based policy iteration are proved to converge to a small neighborhood of the optimal solution with probability one, under mild conditions. The application of the proposed algorithm to a triple inverted pendulum example validates its feasibility and effectiveness.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment