Integration of Autoencoder and Functional Link Artificial Neural Network for Multi-label Classification

Anwesha Law, Ashish Ghosh

Multi-label (ML) classification is an actively researched topic currently, which deals with convoluted and overlapping boundaries that arise due to several labels being active for a particular data instance. We propose a classifier capable of extracting underlying features and introducing non-linearity to the data to handle the complex decision boundaries. A novel neural network model has been developed where the input features are subjected to two transformations adapted from multi-label functional link artificial neural network and autoencoders. First, a functional expansion of the original features are made using basis functions. This is followed by an autoencoder-aided transformation and reduction on the expanded features. This network is capable of improving separability for the multi-label data owing to the two-layer transformation while reducing the expanded feature space to a more manageable amount. This balances the input dimension which leads to a better classification performance even for a limited amount of data. The proposed network has been validated on five ML datasets which shows its superior performance in comparison with six well-established ML classifiers. Furthermore, a single-label variation of the proposed network has also been formulated simultaneously and tested on four relevant datasets against three existing classifiers to establish its effectiveness.

Knowledge Graph



Sign up or login to leave a comment