Machine Learning Enhanced Blockchain Consensus with Transaction Prioritization for Smart Cities

S. Valli Sanghami, John J. Lee, Qin Hu

In the given technology-driven era, smart cities are the next frontier of technology, aiming at improving the quality of people's lives. Many research works focus on future smart cities with a holistic approach towards smart city development. In this paper, we introduce such future smart cities that leverage blockchain technology in areas like data security, energy and waste management, governance, transport, supply chain, including emergency events, and environmental monitoring. Blockchain, being a decentralized immutable ledger, has the potential to promote the development of smart cities by guaranteeing transparency, data security, interoperability, and privacy. Particularly, using blockchain in emergency events will provide interoperability between many parties involved in the response, will increase timeliness of services, and establish transparency. In that case, if a current fee-based or first-come-first-serve-based processing is used, emergency events may get delayed in being processed due to competition, and thus, threatening people's lives. Thus, there is a need for transaction prioritization based on the priority of information and quick creation of blocks (variable interval block creation mechanism). Also, since the leaders ensure transaction prioritization while generating blocks, leader rotation and proper election procedure become important for the transaction prioritization process to take place honestly and efficiently. In our consensus protocol, we deploy a machine learning (ML) algorithm to achieve efficient leader election and design a novel dynamic block creation algorithm. Also, to ensure honest assessment from the followers on the blocks generated by the leaders, a peer-prediction-based verification mechanism is proposed. Both security analysis and simulation experiments are carried out to demonstrate the robustness and accuracy of our proposed scheme.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment