Conditional Sound Generation Using Neural Discrete Time-Frequency Representation Learning

Xubo Liu, Turab Iqbal, Jinzheng Zhao, Qiushi Huang, Mark D. Plumbley, Wenwu Wang

Deep generative models have recently achieved impressive performance in speech synthesis and music generation. However, compared to the generation of those domain-specific sounds, the generation of general sounds (such as car horn, dog barking, and gun shot) has received less attention, despite their wide potential applications. In our previous work, sounds are generated in the time domain using SampleRNN. However, it is difficult to capture long-range dependencies within sound recordings using this method. In this work, we propose to generate sounds conditioned on sound classes via neural discrete time-frequency representation learning. This offers an advantage in modelling long-range dependencies and retaining local fine-grained structure within a sound clip. We evaluate our proposed approach on the UrbanSound8K dataset, as compared to a SampleRNN baseline, with the performance metrics measuring the quality and diversity of the generated sound samples. Experimental results show that our proposed method offers significantly better performance in diversity and comparable performance in quality, as compared to the baseline method.

Knowledge Graph



Sign up or login to leave a comment