Meet The Truth: Leverage Objective Facts and Subjective Views for Interpretable Rumor Detection

Jiawen Li, Shiwen Ni, Hung-Yu Kao

Existing rumor detection strategies typically provide detection labels while ignoring their explanation. Nonetheless, providing pieces of evidence to explain why a suspicious tweet is rumor is essential. As such, a novel model, LOSIRD, was proposed in this paper. First, LOSIRD mines appropriate evidence sentences and classifies them by automatically checking the veracity of the relationship of the given claim and its evidence from about 5 million Wikipedia documents. LOSIRD then automatically constructs two heterogeneous graph objects to simulate the propagation layout of the tweets and code the rela?tionship of evidence. Finally, a graphSAGE processing component is used in LOSIRD to provide the label and evidence. To the best of our knowledge, we are the first one who combines objective facts and subjective views to verify rumor. The experimental results on two real-world Twitter datasets showed that our model exhibited the best performance in the early rumor detection task and its rumor detection performance outperformed other baseline and state-of-the-art models. Moreover, we confirmed that both objective information and subjective information are fundamental clues for rumor detection.

Knowledge Graph



Sign up or login to leave a comment