Impacts Towards a comprehensive assessment of the book impact by integrating multiple evaluation sources

Qingqing Zhou, Chengzhi Zhang

The surge in the number of books published makes the manual evaluation methods difficult to efficiently evaluate books. The use of books' citations and alternative evaluation metrics can assist manual evaluation and reduce the cost of evaluation. However, most existing evaluation research was based on a single evaluation source with coarse-grained analysis, which may obtain incomprehensive or one-sided evaluation results of book impact. Meanwhile, relying on a single resource for book assessment may lead to the risk that the evaluation results cannot be obtained due to the lack of the evaluation data, especially for newly published books. Hence, this paper measured book impact based on an evaluation system constructed by integrating multiple evaluation sources. Specifically, we conducted finer-grained mining on the multiple evaluation sources, including books' internal evaluation resources and external evaluation resources. Various technologies (e.g. topic extraction, sentiment analysis, text classification) were used to extract corresponding evaluation metrics from the internal and external evaluation resources. Then, Expert evaluation combined with analytic hierarchy process was used to integrate the evaluation metrics and construct a book impact evaluation system. Finally, the reliability of the evaluation system was verified by comparing with the results of expert evaluation, detailed and diversified evaluation results were then obtained. The experimental results reveal that differential evaluation resources can measure the books' impacts from different dimensions, and the integration of multiple evaluation data can assess books more comprehensively. Meanwhile, the book impact evaluation system can provide personalized evaluation results according to the users' evaluation purposes. In addition, the disciplinary differences should be considered for assessing books' impacts.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment