JS Fake Chorales: a Synthetic Dataset of Polyphonic Music with Human Annotation

Omar Peracha

High quality datasets for learning-based modelling of polyphonic symbolic music remain less readily-accessible at scale than in other domains, such as language modelling or image classification. In particular, datasets which contain information revealing insights about human responses to the given music samples are rare. The issue of scale persists as a general hindrance towards breakthroughs in the field, while the lack of listener evaluation is especially relevant to the generative modelling problem-space, where clear objective metrics correlating strongly with qualitative success remain elusive. We propose the JS Fake Chorales, a dataset of 500 pieces generated by a new learning-based algorithm, provided in MIDI form. We take consecutive outputs from the algorithm and avoid cherry-picking in order to validate the potential to further scale this dataset on-demand. We conduct an online experiment for human evaluation, designed to be as fair to the listener as possible, and find that respondents were on average only 7\% better than random guessing at distinguishing JS Fake Chorales from real chorales composed by JS Bach. Furthermore, we make anonymised data collected from experiments available along with the MIDI samples, such as the respondents' musical experience and how long they took to submit their response for each sample. Finally, we conduct ablation studies to demonstrate the effectiveness of using the synthetic pieces for research in polyphonic music modelling, and find that we can improve on state-of-the-art validation set loss for the canonical JSB Chorales dataset, using a known algorithm, by simply augmenting the training set with the JS Fake Chorales.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment