Multi-Stream Transformers

Mikhail Burtsev, Anna Rumshisky

Transformer-based encoder-decoder models produce a fused token-wise representation after every encoder layer. We investigate the effects of allowing the encoder to preserve and explore alternative hypotheses, combined at the end of the encoding process. To that end, we design and examine a $\textit{Multi-stream Transformer}$ architecture and find that splitting the Transformer encoder into multiple encoder streams and allowing the model to merge multiple representational hypotheses improves performance, with further improvement obtained by adding a skip connection between the first and the final encoder layer.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment