Improving the Authentication with Built-in Camera ProtocolUsing Built-in Motion Sensors: A Deep Learning Solution

Cezara Benegui, Radu Tudor Ionescu

We propose an enhanced version of the Authentication with Built-in Camera (ABC) protocol by employing a deep learning solution based on built-in motion sensors. The standard ABC protocol identifies mobile devices based on the photo-response non-uniformity (PRNU) of the camera sensor, while also considering QR-code-based meta-information. During authentication, the user is required to take two photos that contain two QR codes presented on a screen. The presented QR code images also contain a unique probe signal, similar to a camera fingerprint, generated by the protocol. During verification, the server computes the fingerprint of the received photos and authenticates the user if (i) the probe signal is present, (ii) the metadata embedded in the QR codes is correct and (iii) the camera fingerprint is identified correctly. However, the protocol is vulnerable to forgery attacks when the attacker can compute the camera fingerprint from external photos, as shown in our preliminary work. In this context, we propose an enhancement for the ABC protocol based on motion sensor data, as an additional and passive authentication layer. Smartphones can be identified through their motion sensor data, which, unlike photos, is never posted by users on social media platforms, thus being more secure than using photographs alone. To this end, we transform motion signals into embedding vectors produced by deep neural networks, applying Support Vector Machines for the smartphone identification task. Our change to the ABC protocol results in a multi-modal protocol that lowers the false acceptance rate for the attack proposed in our previous work to a percentage as low as 0.07%.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment