Algebraic compressed sensing

Paul Breiding, Fulvio Gesmundo, Mateusz Michałek, Nick Vannieuwenhoven

We introduce the broad subclass of algebraic compressed sensing problems, where structured signals are modeled either explicitly or implicitly via polynomials. This includes, for instance, low-rank matrix and tensor recovery. We employ powerful techniques from algebraic geometry to study well-posedness of sufficiently general compressed sensing problems, including existence, local recoverability, global uniqueness, and local smoothness. Our main results are summarized in thirteen questions and answers in algebraic compressed sensing. Most of our answers concerning the minimum number of required measurements for existence, recoverability, and uniqueness of algebraic compressed sensing problems are optimal and depend only on the dimension of the model.

Knowledge Graph



Sign up or login to leave a comment