L\'evy Induced Stochastic Differential Equation Equipped with Neural Network for Time Series Forecasting

Luxuan Yang, Ting Gao, Yubin Lu, Jinqiao Duan, Tao Liu

With the fast development of modern deep learning techniques, the study of dynamic systems and neural networks is increasingly benefiting each other in a lot of different ways. Since uncertainties often arise in real world observations, SDEs (stochastic differential equations) come to play an important role. To be more specific, in this paper, we use a collection of SDEs equipped with neural networks to predict long-term trend of noisy time series which has big jump properties and high probability distribution shift. Our contributions are, first, we explored SDEs driven by $\alpha$-stable L\'evy motion to model the time series data and solved the problem through neural network approximation. Second, we theoretically proved the convergence of the model and obtained the convergence rate. Finally, we illustrated our method by applying it to stock marketing time series prediction and found the convergence order of error.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment