Adapting Software Architectures to Machine Learning Challenges

Alex Serban, Joost Visser

Unique developmental and operational characteristics of ML components as well as their inherent uncertainty demand robust engineering principles are used to ensure their quality. We aim to determine how software systems can be (re-) architected to enable robust integration of ML components. Towards this goal, we conducted a mixed-methods empirical study consisting of (i) a systematic literature review to identify the challenges and their solutions in software architecture for ML, (ii) semi-structured interviews with practitioners to qualitatively complement the initial findings and (iii) a survey to quantitatively validate the challenges and their solutions. We compiled and validated twenty challenges and solutions for (re-) architecting systems with ML components. Our results indicate, for example, that traditional software architecture challenges (e.g., component coupling) also play an important role when using ML components; along with new ML specific challenges (e.g., the need for continuous retraining). Moreover, the results indicate that ML heightened decision drivers, such as privacy, play a marginal role compared to traditional decision drivers, such as scalability. Using the survey we were able to establish a link between architectural solutions and software quality attributes, which enabled us to provide twenty architectural tactics used to satisfy individual quality requirements of systems with ML components. Altogether, the results of the study can be interpreted as an empirical framework that supports the process of (re-) architecting software systems with ML components.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment