A smallest computable entanglement monotone

J. Eisert, M. M. Wilde

The Rains relative entropy of a bipartite quantum state is the tightest known upper bound on its distillable entanglement - which has a crisp physical interpretation of entanglement as a resource - and it is efficiently computable by convex programming. It has not been known to be a selective entanglement monotone in its own right. In this work, we strengthen the interpretation of the Rains relative entropy by showing that it is monotone under the action of selective operations that completely preserve the positivity of the partial transpose, reasonably quantifying entanglement. That is, we prove that Rains relative entropy of an ensemble generated by such an operation does not exceed the Rains relative entropy of the initial state in expectation, giving rise to the smallest, most conservative known computable selective entanglement monotone. Additionally, we show that this is true not only for the original Rains relative entropy, but also for Rains relative entropies derived from various Renyi relative entropies. As an application of these findings, we prove, in both the non-asymptotic and asymptotic settings, that the probabilistic approximate distillable entanglement of a state is bounded from above by various Rains relative entropies.

Knowledge Graph



Sign up or login to leave a comment