In south India, there are traditional patterns of line-drawings encircling dots, called ``Kolam'', among which one-line drawings or the ``infinite Kolam'' provide very interesting questions in mathematics. For example, we address the following simple question: how many patterns of infinite Kolam can we draw for a given grid pattern of dots? The simplest way is to draw possible patterns of Kolam while judging if it is infinite Kolam. Such a search problem seems to be NP complete. However, it is certainly not. In this paper, we focus on diamond-shaped grid patterns of dots, (1-3-5-3-1) and (1-3-5-7-5-3-1) in particular. By using the knot-theory description of the infinite Kolam, we show how to find the solution, which inevitably gives a sketch of the proof for the statement ``infinite Kolam is not NP complete.'' Its further discussion will be given in the final section.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok