Let $G$ be a graph having a vertex $v$ such that $H = G - v$ is a trivially perfect graph. We give a polynomial-time algorithm for the problem of deciding whether it is possible to add at most $k$ edges to $G$ to obtain a trivially perfect graph. This is a slight variation of the well-studied {\sc Edge Completion}, also known as {\sc Minimum Fill-In}, problem. We also show that if $H$ is a chordal graph, then the problem of deciding whether it is possible to add at most $k$ edges to $G$ to obtain a chordal graph is \NP-complete.