A Local-Ratio-Based Power Control Approach for Capacitated Access Points in Mobile Edge Computing

Qinghui Zhang, Weidong Li, Qian Su, Xuejie Zhang

Terminal devices (TDs) connect to networks through access points (APs) integrated into the edge server. This provides a prerequisite for TDs to upload tasks to cloud data centers or offload them to edge servers for execution. In this process, signal coverage, data transmission, and task execution consume energy, and the energy consumption of signal coverage increases sharply as the radius increases. Lower power leads to less energy consumption in a given time segment. Thus, power control for APs is essential for reducing energy consumption. Our objective is to determine the power assignment for each AP with same capacity constraints such that all TDs are covered, and the total power is minimized. We define this problem as a \emph{minimum power capacitated cover } (MPCC) problem and present a \emph{minimum local ratio} (MLR) power control approach for this problem to obtain accurate results in polynomial time. Power assignments are chosen in a sequence of rounds. In each round, we choose the power assignment that minimizes the ratio of its power to the number of currently uncovered TDs it contains. In the event of a tie, we pick an arbitrary power assignment that achieves the minimum ratio. We continue choosing power assignments until all TDs are covered. Finally, various experiments verify that this method can outperform another greedy-based way.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment