Mismatching-Aware Unsupervised Translation Quality Estimation For Low-Resource Languages

Fatemeh Azadi, Heshaam Faili, Mohammad Javad Dousti

Translation Quality Estimation (QE) is the task of predicting the quality of machine translation (MT) output without any reference. This task has gained increasing attention as an important component in practical applications of MT. In this paper, we first propose XLMRScore, a simple unsupervised QE method based on the BERTScore computed using the XLM-RoBERTa (XLMR) model while discussing the issues that occur using this method. Next, we suggest two approaches to mitigate the issues: replacing untranslated words with the unknown token and the cross-lingual alignment of pre-trained model to represent aligned words closer to each other. We evaluate the proposed method on four low-resource language pairs of WMT21 QE shared task, as well as a new English-Farsi test dataset introduced in this paper. Experiments show that our method could get comparable results with the supervised baseline for two zero-shot scenarios, i.e., with less than 0.01 difference in Pearson correlation, while outperforming the unsupervised rivals in all the low-resource language pairs for above 8% in average.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment