Control theoretically explainable application of autoencoder methods to fault detection in nonlinear dynamic systems

Linlin Li, Steven X. Ding, Ketian Liang, Zhiwen Chen, Ting Xue

This paper is dedicated to control theoretically explainable application of autoencoders to optimal fault detection in nonlinear dynamic systems. Autoencoder-based learning is a standard method of machine learning technique and widely applied for fault (anomaly) detection and classification. In the context of representation learning, the so-called latent (hidden) variable plays an important role towards an optimal fault detection. In ideal case, the latent variable should be a minimal sufficient statistic. The existing autoencoder-based fault detection schemes are mainly application-oriented, and few efforts have been devoted to optimal autoencoder-based fault detection and explainable applications. The main objective of our work is to establish a framework for learning autoencoder-based optimal fault detection in nonlinear dynamic systems. To this aim, a process model form for dynamic systems is firstly introduced with the aid of control and system theory, which also leads to a clear system interpretation of the latent variable. The major efforts are devoted to the development of a control theoretical solution to the optimal fault detection problem, in which an analog concept to minimal sufficient statistic, the so-called lossless information compression, is introduced for dynamic systems and fault detection specifications. In particular, the existence conditions for such a latent variable are derived, based on which a loss function and further a learning algorithm are developed. This learning algorithm enables optimally training of autoencoders to achieve an optimal fault detection in nonlinear dynamic systems. A case study on three-tank system is given at the end of this paper to illustrate the capability of the proposed autoencoder-based fault detection and to explain the essential role of the latent variable in the proposed fault detection system.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment