Automated modeling of brain bioelectric activity within the 3D Slicer environment

Saima Safdar, Benjamin Zwick, George Bourantas, Grand Joldes, Damon Hyde, Simon Warfield, Adam Wittek, Karol Miller

Electrocorticography (ECoG) or intracranial electroencephalography (iEEG) monitors electric potential directly on the surface of the brain and can be used to inform treatment planning for epilepsy surgery when paired with numerical modeling. For solving the inverse problem in epilepsy seizure onset localization, accurate solution of the iEEG forward problem is critical which requires accurate representation of the patient's brain geometry and tissue electrical conductivity. In this study, we present an automatic framework for constructing the brain volume conductor model for solving the iEEG forward problem and visualizing the brain bioelectric field on a deformed patient-specific brain model within the 3D Slicer environment. We solve the iEEG forward problem on the predicted postoperative geometry using the finite element method (FEM) which accounts for patient-specific inhomogeneity and anisotropy of tissue conductivity. We use an epilepsy case study to illustrate the workflow of our framework developed and integrated within 3D Slicer.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment