A proper fusion of complex data is of interest to many researchers in diverse fields, including computational statistics, computational geometry, bioinformatics, machine learning, pattern recognition, quality management, engineering, statistics, finance, economics, etc. It plays a crucial role in: synthetic description of data processes or whole domains, creation of rule bases for approximate reasoning tasks, reaching consensus and selection of the optimal strategy in decision support systems, imputation of missing values, data deduplication and consolidation, record linkage across heterogeneous databases, and clustering. This open-access research monograph integrates the spread-out results from different domains using the methodology of the well-established classical aggregation framework, introduces researchers and practitioners to Aggregation 2.0, as well as points out the challenges and interesting directions for further research.