Anastasios N. Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, Tal Schuster

We extend conformal prediction to control the expected value of any monotone loss function. The algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal prediction, the conformal risk control procedure is tight up to an $\mathcal{O}(1/n)$ factor. Worked examples from computer vision and natural language processing demonstrate the usage of our algorithm to bound the false negative rate, graph distance, and token-level F1-score.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment