Feature representation learning is the key recipe for learning-based Multi-View Stereo (MVS). As the common feature extractor of learning-based MVS, vanilla Feature Pyramid Networks (FPN) suffers from discouraged feature representations for reflection and texture-less areas, which limits the generalization of MVS. Even FPNs worked with pre-trained Convolutional Neural Networks (CNNs) fail to tackle these issues. On the other hand, Vision Transformers (ViTs) have achieved prominent success in many 2D vision tasks. Thus we ask whether ViTs can facilitate the feature learning in MVS? In this paper, we propose a pre-trained ViT enhanced MVS network called MVSFormer, which can learn more reliable feature representations benefited by informative priors from ViT. Then MVSFormer-P and MVSFormer-H are further proposed with fixed ViT weights and trainable ones respectively. MVSFormer-P is more efficient while MVSFormer-H can achieve superior performance. To make ViTs robust to arbitrary resolutions for MVS tasks, we propose to use an efficient multi-scale training with gradient accumulation. Moreover, we discuss the merits and drawbacks of classification and regression-based MVS methods, and further propose to unify them with a temperature-based strategy. MVSFormer achieves state-of-the-art performance on the DTU dataset. Particularly, our anonymous submission of MVSFormer is ranked in the Top-1 position on both intermediate and advanced sets of the highly competitive Tanks-and-Temples leaderboard on the day of submission compared with other published works. Codes and models will be released.