Rating prediction is a core problem in recommender systems to quantify user's preferences towards items, however, rating imbalance naturally roots in real-world user ratings that cause biased predictions and lead to poor performance on tail ratings. While existing approaches in the rating prediction task deploy weighted cross-entropy to re-weight training samples, such approaches commonly assume an normal distribution, a symmetrical and balanced space. In contrast to the normal assumption, we propose a novel \underline{\emph{G}}umbel-based \underline{\emph{V}}ariational \underline{\emph{N}}etwork framework (GVN) to model rating imbalance and augment feature representations by the Gumbel distributions. We propose a Gumbel-based variational encoder to transform features into non-normal vector space. Second, we deploy a multi-scale convolutional fusion network to integrate comprehensive views of users and items from the rating matrix and user reviews. Third, we adopt a skip connection module to personalize final rating predictions. We conduct extensive experiments on five datasets with both error- and ranking-based metrics. Experiments on ranking and regression evaluation tasks prove that the GVN can effectively achieve state-of-the-art performance across the datasets and reduce the biased predictions of tail ratings. We compare with various distributions (e.g., normal and Poisson) and demonstrate the effectiveness of Gumbel-based methods on class-imbalance modeling.