On Compression Functions over Small Groups with Applications to Cryptography

Koji Nuida

In the area of cryptography, fully homomorphic encryption (FHE) enables any entity to perform arbitrary computation on encrypted data without decrypting the ciphertexts. An ongoing group-theoretic approach to construct FHE schemes uses a certain "compression" function $F(x)$ implemented by group operators on a given finite group $G$ (i.e., it is given by a sequence of elements of $G$ and variable $x$), which satisfies that $F(1) = 1$ and $F(\sigma) = F(\sigma^2) = \sigma$ where $\sigma \in G$ is some element of order three. The previous work gave an example of such $F$ over $G = S_5$ by just a heuristic approach. In this paper, we systematically study the possibilities of such $F$. We construct a shortest possible $F$ over smaller group $G = A_5$, and prove that no such $F$ exists over other groups $G$ of order up to $60 = |A_5|$.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment