Low-redundancy codes for correcting multiple short-duplication and edit errors

Yuanyuan Tang, Shuche Wang, Hao Lou, Ryan Gabrys, Farzad Farnoud

Due to its higher data density, longevity, energy efficiency, and ease of generating copies, DNA is considered a promising storage technology for satisfying future needs. However, a diverse set of errors including deletions, insertions, duplications, and substitutions may arise in DNA at different stages of data storage and retrieval. The current paper constructs error-correcting codes for simultaneously correcting short (tandem) duplications and at most $p$ edits, where a short duplication generates a copy of a substring with length $\leq 3$ and inserts the copy following the original substring, and an edit is a substitution, deletion, or insertion. Compared to the state-of-the-art codes for duplications only, the proposed codes correct up to $p$ edits (in addition to duplications) at the additional cost of roughly $8p(\log_q n)(1+o(1))$ symbols of redundancy, thus achieving the same asymptotic rate, where $q\ge 4$ is the alphabet size and $p$ is a constant. Furthermore, the time complexities of both the encoding and decoding processes are polynomial when $p$ is a constant with respect to the code length.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment