Symbolic Execution for Randomized Programs

Zachary Susag, Sumit Lahiri, Justin Hsu, Subhajit Roy

We propose a symbolic execution method for programs that can draw random samples. In contrast to existing work, our method can verify randomized programs with unknown inputs and can prove probabilistic properties that universally quantify over all possible inputs. Our technique augments standard symbolic execution with a new class of \emph{probabilistic symbolic variables}, which represent the results of random draws, and computes symbolic expressions representing the probability of taking individual paths. We implement our method on top of the \textsc{KLEE} symbolic execution engine alongside multiple optimizations and use it to prove properties about probabilities and expected values for a range of challenging case studies written in C++, including Freivalds' algorithm, randomized quicksort, and a randomized property-testing algorithm for monotonicity. We evaluate our method against \textsc{Psi}, an exact probabilistic symbolic inference engine, and \textsc{Storm}, a probabilistic model checker, and show that our method significantly outperforms both tools.

Knowledge Graph



Sign up or login to leave a comment