Joint Optimization for RIS-Assisted Wireless Communications: From Physical and Electromagnetic Perspectives

Xin Cheng, Yan Lin, Weiping Shi, Jiayu Li, Cunhua Pan, Feng Shu, Yongpeng Wu, Jiangzhou Wang

Reconfigurable intelligent surfaces (RISs) are envisioned to be a disruptive wireless communication technique that is capable of reconfiguring the wireless propagation environment. In this paper, we study a free-space RIS-assisted multiple-input single-output (MISO) communication system in far-field operation. To maximize the received power from the physical and electromagnetic nature point of view, a comprehensive optimization, including beamforming of the transmitter, phase shifts of the RIS, orientation and position of the RIS is formulated and addressed. After exploiting the property of line-of-sight (LoS) links, we derive closed-form solutions of beamforming and phase shifts. For the non-trivial RIS position optimization problem in arbitrary three-dimensional space, a dimensional-reducing theory is proved. The simulation results show that the proposed closed-form beamforming and phase shifts approach the upper bound of the received power. The robustness of our proposed solutions in terms of the perturbation is also verified. Moreover, the RIS significantly enhances the performance of the mmWave/THz communication system.

Knowledge Graph



Sign up or login to leave a comment