Numerical Approximations for the Null Controllers of Structurally Damped Plate Dynamics

Pelin G. Geredeli, Carson Givens, Ahmed Zytoon

In this paper, we consider a structurally damped elastic equation under hinged boundary conditions. Fully-discrete numerical approximation schemes are generated for the null controllability of these parabolic-like PDEs. We mainly use finite element method (FEM) and finite difference method (FDM) approximations to show that the null controllers being approximated via FEM and FDM exhibit exactly the same asymptotics of the associated minimal energy function. For this, we appeal to the theory originally given by R. Triggiani [20] for construction of null controllers of ODE systems. These null controllers are also amenable to our numerical implementation in which we discuss the aspects of FEM and FDM numerical approximations and compare both methodologies. We justify our theoretical results with the numerical experiments given for both approximation schemes.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment