Technical Report for Trend Prediction Based Intelligent UAV Trajectory Planning for Large-scale Dynamic Scenarios

Jinjing Wang, Xindi Wang

The unmanned aerial vehicle (UAV)-enabled communication technology is regarded as an efficient and effective solution for some special application scenarios where existing terrestrial infrastructures are overloaded to provide reliable services. To maximize the utility of the UAV-enabled system while meeting the QoS and energy constraints, the UAV needs to plan its trajectory considering the dynamic characteristics of scenarios, which is formulated as the Markov Decision Process (MDP). To solve the above problem, a deep reinforcement learning (DRL)-based scheme is proposed here, which predicts the trend of the dynamic scenarios to provide a long-term view for the UAV trajectory planning. Simulation results validate that our proposed scheme converges more quickly and achieves the better performance in dynamic scenarios.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment