Better Hardness Results for the Minimum Spanning Tree Congestion Problem

Huong Luu, Marek Chrobak

In the spanning tree congestion problem, given a connected graph $G$, the objective is to compute a spanning tree $T$ in $G$ for which the maximum edge congestion is minimized, where the congestion of an edge $e$ of $T$ is the number of vertex pairs adjacent in $G$ for which the path connecting them in $T$ traverses $e$. The problem is known to be NP-hard, but its approximability is still poorly understood, and it is not even known whether the optimum can be efficiently approximated with ratio $o(n)$. In the decision version of this problem, denoted STC-$K$, we need to determine if $G$ has a spanning tree with congestion at most $K$. It is known that STC-$K$ is NP-complete for $K\ge 8$, and this implies a lower bound of $1.125$ on the approximation ratio of minimizing congestion. On the other hand, $3$-STC can be solved in polynomial time, with the complexity status of this problem for $K\in \{4,5,6,7\}$ remaining an open problem. We substantially improve the earlier hardness result by proving that STC-$K$ is NP-complete for $K\ge 5$. This leaves only the case $K=4$ open, and improves the lower bound on the approximation ratio to $1.2$.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment