Application of Neural Network in the Prediction of NOx Emissions from Degrading Gas Turbine

Zhenkun Zheng, Alan Rezazadeh

This paper is aiming to apply neural network algorithm for predicting the process response (NOx emissions) from degrading natural gas turbines. Nine different process variables, or predictors, are considered in the predictive modelling. It is found out that the model trained by neural network algorithm should use part of recent data in the training and validation sets accounting for the impact of the system degradation. R-Square values of the training and validation sets demonstrate the validity of the model. The residue plot, without any clear pattern, shows the model is appropriate. The ranking of the importance of the process variables are demonstrated and the prediction profile confirms the significance of the process variables. The model trained by using neural network algorithm manifests the optimal settings of the process variables to reach the minimum value of NOx emissions from the degrading gas turbine system.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment