Given a non-decreasing sequence $S = (s_{1}, s_{2}, \ldots , s_{k})$ of positive integers, an $S$-packing coloring of a graph $G$ is a partition of the vertex set of $G$ into $k$ subsets $\{V_{1}, V_{2}, \ldots , V_{k}\}$ such that for each $1 \leq i \leq k$, the distance between any two distinct vertices $u$ and $v$ in $V_{i}$ is at least $s_{i} + 1$. In this paper, we study the problem of $S$-packing coloring of cubic Halin graphs, and we prove that every cubic Halin graph is $(1,1,2,3)$-packing colorable. In addition, we prove that such graphs are $(1,2,2,2,2,2)$-packing colorable.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok