Algebraic semantics for one-variable lattice-valued logics

Petr Cintula, George Metcalfe, Naomi Tokuda

The one-variable fragment of any first-order logic may be considered as a modal logic, where the universal and existential quantifiers are replaced by a box and diamond modality, respectively. In several cases, axiomatizations of algebraic semantics for these logics have been obtained: most notably, for the modal counterparts S5 and MIPC of the one-variable fragments of first-order classical logic and intuitionistic logic, respectively. Outside the setting of first-order intermediate logics, however, a general approach is lacking. This paper provides the basis for such an approach in the setting of first-order lattice-valued logics, where formulas are interpreted in algebraic structures with a lattice reduct. In particular, axiomatizations are obtained for modal counterparts of one-variable fragments of a broad family of these logics by generalizing a functional representation theorem of Bezhanishvili and Harding for monadic Heyting algebras. An alternative proof-theoretic proof is also provided for one-variable fragments of first-order substructural logics that have a cut-free sequent calculus and admit a certain bounded interpolation property.

Knowledge Graph



Sign up or login to leave a comment