The BUCEA Speaker Diarization System for the VoxCeleb Speaker Recognition Challenge 2022

Ruohua Zhou, Yuxuan Du, Chenlei Hu

This paper describes the BUCEA speaker diarization system for the 2022 VoxCeleb Speaker Recognition Challenge. Voxsrc-22 provides the development set and test set of VoxConverse, and we mainly use the test set of VoxConverse for parameter adjustment. Our system consists of several modules, including speech activity detection (VAD), speaker embedding extractor, clustering methods, overlapping speech detection (OSD), and result fusion. Without considering overlap, the Dover-LAP (short for Diarization Output Voting Error Reduction) method was applied to system fusion, and overlapping speech detection and processing were finally carried out. Our best system achieves a diarization error rate (DER) of 5.48% and a Jaccard error rate (JER) of 32.1% on the VoxSRC 2022 evaluation set respectively.

Knowledge Graph



Sign up or login to leave a comment