Maximizing a Submodular Function with Bounded Curvature under an Unknown Knapsack Constraint

Max Klimm, Martin Knaack

This paper studies the problem of maximizing a monotone submodular function under an unknown knapsack constraint. A solution to this problem is a policy that decides which item to pack next based on the past packing history. The robustness factor of a policy is the worst case ratio of the solution obtained by following the policy and an optimal solution that knows the knapsack capacity. We develop an algorithm with a robustness factor that is decreasing in the curvature $B$ of the submodular function. For the extreme cases $c=0$ corresponding to a modular objective, it matches a previously known and best possible robustness factor of $1/2$. For the other extreme case of $c=1$ it yields a robustness factor of $\approx 0.35$ improving over the best previously known robustness factor of $\approx 0.06$.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment