Exponential advantage on noisy quantum computers

Ismail Yunus Akhalwaya, Shashanka Ubaru, Kenneth L. Clarkson, Mark S. Squillante, Vishnu Jejjala, Yang-Hui He, Kugendran Naidoo, Vasileios Kalantzis, Lior Horesh

Quantum computing offers the potential of exponential speedup over classical computation for certain problems. However, many of the existing algorithms with provable speedups require currently unavailable fault-tolerant quantum computers. We present NISQ-TDA, the first fully implemented quantum machine learning algorithm with provable exponential speedup on arbitrary classical (non-handcrafted) data and needing only a linear circuit depth. We report the successful execution of our NISQ-TDA algorithm, applied to small datasets run on quantum computing devices, as well as on noisy quantum simulators. We empirically confirm that the algorithm is robust to noise, and provide target depths and noise levels to realize near-term, non-fault-tolerant quantum advantage on real-world problems. Our unique data-loading projection method is the main source of noise robustness, introducing a new self-correcting data-loading approach.

Knowledge Graph



Sign up or login to leave a comment