Locality and stability for phase retrieval

Wedad Alharbi, Salah Alshabhi, Daniel Freeman, Dorsa Ghoreishi

A frame $(x_j)_{j\in J}$ for a Hilbert space $H$ is said to do phase retrieval if for all distinct vectors $x,y\in H$ the magnitude of the frame coefficients $(|\langle x, x_j\rangle|)_{j\in J}$ and $(|\langle y, x_j\rangle|)_{j\in J}$ distinguish $x$ from $y$ (up to a unimodular scalar). We consider the weaker condition where the magnitude of the frame coefficients distinguishes $x$ from every vector $y$ in a small neighborhood of $x$ (up to a unimodular scalar). We prove that some of the important theorems for phase retrieval hold for this local condition, where as some theorems are completely different. We prove as well that when considering stability of phase retrieval, the worst stability inequality is always witnessed at orthogonal vectors. This allows for much simpler calculations when considering optimization problems for phase retrieval.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment