Certified Training: Small Boxes are All You Need

Mark Niklas Müller, Franziska Eckert, Marc Fischer, Martin Vechev

We propose the novel certified training method, SABR, which outperforms existing methods across perturbation magnitudes on MNIST, CIFAR-10, and TinyImageNet, in terms of both standard and certifiable accuracies. The key insight behind SABR is that propagating interval bounds for a small but carefully selected subset of the adversarial input region is sufficient to approximate the worst-case loss over the whole region while significantly reducing approximation errors. SABR does not only establish a new state-of-the-art in all commonly used benchmarks but more importantly, points to a new class of certified training methods promising to overcome the robustness-accuracy trade-off.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment