Real-world datasets often contain outliers, and the presence of outliers can make the clustering problems to be much more challenging. In this paper, we propose a simple uniform sampling framework for solving three representative center-based clustering with outliers problems: $k$-center/median/means clustering with outliers. Our analysis is fundamentally different from the previous (uniform and non-uniform) sampling based ideas. To explain the effectiveness of uniform sampling in theory, we introduce a measure of ``significance'' and prove that the performance of our framework depends on the significance degree of the given instance. In particular, the sample size can be independent of the input data size $n$ and the dimensionality $d$, if we assume the given instance is ``significant'', which is in fact a fairly reasonable assumption in practice. Due to its simplicity, the uniform sampling approach also enjoys several significant advantages over the non-uniform sampling approaches in practice. To the best of our knowledge, this is the first work that systematically studies the effectiveness of uniform sampling from both theoretical and experimental aspects.