Reliable Neural Networks for Regression Uncertainty Estimation

Tony Tohme, Kevin Vanslette, Kamal Youcef-Toumi

While deep neural networks are highly performant and successful in a wide range of real-world problems, estimating their predictive uncertainty remains a challenging task. To address this challenge, we propose and implement a loss function for regression uncertainty estimation based on the Bayesian Validation Metric (BVM) framework while using ensemble learning. The proposed loss reproduces maximum likelihood estimation in the limiting case. A series of experiments on in-distribution data show that the proposed method is competitive with existing state-of-the-art methods. Experiments on out-of-distribution data show that the proposed method is robust to statistical change and exhibits superior predictive capability.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment