Propagation rules are of great help in constructing good linear codes. Both Euclidean and Hermitian hulls of linear codes perform an important part in coding theory. In this paper, we consider these two aspects together and determine the dimensions of Euclidean and Hermitian hulls of two classical propagation rules, namely, the direct sum construction and the $(\mathbf{u},\mathbf{u+v})$-construction. Some new criteria for resulting codes derived from these two propagation rules being self-dual, self-orthogonal or linear complement dual (LCD) codes are given. As applications, we construct some linear codes with prescribed hull dimensions and many new binary, ternary Euclidean formally self-dual (FSD) LCD codes, quaternary Hermitian FSD LCD codes and good quaternary Hermitian LCD codes which are optimal or have best or almost best known parameters according to Datebase at $http://www.codetables.de$. Moreover, our methods contributes positively to improve the lower bounds on the minimum distance of known LCD codes.