Generalized Stable Weights via Neural Gibbs Density

Yoshiaki Kitazawa

We present a generalized balancing weight method fully available for estimating causal effects for an arbitrary mixture of discrete and continuous interventions. Our weights are trainable through back-propagation, and we give a method for estimating the weights via neural network algorithms. In addition, we also provide a method to measure the performance of our weights by estimating the mutual information for the balanced distribution. Our method is easy to implement with any present deep learning libraries, and the weights from it can be used in most state-of-art supervised algorithms.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment